If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+10w-7200=0
a = 1; b = 10; c = -7200;
Δ = b2-4ac
Δ = 102-4·1·(-7200)
Δ = 28900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28900}=170$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-170}{2*1}=\frac{-180}{2} =-90 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+170}{2*1}=\frac{160}{2} =80 $
| 2.4x+43.3=12.4-7.9x | | 51+6n+(3n-24)=180 | | 4.5x+1.5x=30 | | -(9x+5)-1=-8x-(x+6) | | 76=-16t^2+92t | | 3(x-7)-4(x=2) | | 2x-24=x-16 | | X+0.5x=250 | | 1/2(3x-8)=4/5(x+2) | | 9(x+10=63 | | 6(2x-3)=10x-2(-x+9) | | 2/5x-9=-13 | | 20/100=4/x | | 45=300•a•3 | | -6.4a-8=-159.68 | | 6x+3+x=7+7 | | 4(3x-2)=57 | | 2+10x=x-52 | | 5n-10=30n= | | 8x-6=8(x-1)+10 | | -17x-19=-70 | | 180=25x+50x+x | | 3(y+5)-2(y-19)=12 | | p+36=8 | | 20x+15x=-35 | | p•20=24 | | p/3+6=6 | | 3/2=5d-1/2 | | -3y+(-8y+4)=7-1(-5-y) | | 2x+1+x=5+5 | | 4y-8=-37 | | 6=m-53/7 |